Molecular and cell biology

Tutor-marked  Assignment  01
Covering :       Book 1  Chapters  1−6;  Molecular modelling  1–5;
Experimental investigation 1;   Reading scientific  literature  1.
Cut-off  date:      Thursday  30   April  2015
Guidance
„ For  advice   on  capturing  pictures  from  the  various   activities  see the S377
Introduction  and  Guide,  Section  5.1.1. A  note  on  ways to  prepare   simple
diagrams   for eTMAs is  available  on  the  Assessment page   of   the  module
website.
This   TMA  assesses the following  module  learning  outcomes:
„ Demonstrate  knowledge  of  the molecular   biology that  underpins  cell  biology
(Questions 1–5).
„ Use a   sophisticated 3-D   molecular   modelling program to  manipulate and
represent   biological   molecules in  a  variety  of   ways (Question  2).
„ Design   and interpret   experiments   that   use  the  techniques  of   SDS−
polyacrylamide gel  electrophoresis (SDS−PAGE)   and  Western blotting
(Question  4).
„ Critically  read  primary papers  from  the scientific  literature  and  be  able  to
extract   and  evaluate key information  from  these  papers  (Question  5).
The table  indicates  the types of   question in  this  TMA, and  the material each
question covers.  It   also  shows   the  percentage of  the total   marks  for this
assignment   allotted  to  each  question.  In  the parts   of   questions   where explanations
or   descriptions  are required,  you  should  aim  to  give  succinct answers of   2  or   3
sentences   maximum.
Question  Materials covered  Marks
1   Chapter  6   10
2   Chapters  2,  3  and  Molecular  modelling   25
3  Data handling  and  Chapter 2   10
4   Chapter  3  and  Experimental  investigation 1  25
5   Chapter  5,  Reading  scientific   literature   30
Question  1

(a)  What are the three   main  classes  of   membrane lipids?  Which of  the three  is
the most   abundant   in  biological   membranes?  (2   marks)
(b)  Name and  explain  the  key property that   membrane  lipids  have  in  common
and  outline  how  this   property determines  the behaviour  of   membrane lipids in
an  aqueous environment.  (3   marks)
Copyright  ©   2015  The   Open  University      WEB  04155   4
8.1
(c)  Using stylized representations, sketch  the structures  that   arise  when
phospholipids   are mixed with  water, and  explain  why  building these
structures   is  energetically favourable.   (5   marks)
Question  2
In  this  question,  you  will  be  using Viewerlite to  explore  the small  G-protein  Ras
and  produce a   molecular  model. G-proteins are described  in  Section  3.6.2 and  we
recommend  that   you  do  this  question after   you  have   completed Molecular
modelling 5.  At that   stage, you  should  be  familiar  with  all the tools  in  Viewerlite
that   are needed  here.
Go to  the ‘Library’  folder,  within the ‘Molecular   models’ section  of   the DVD,
and  open   the  file  1q21, which shows  the catalytic  domain  of   human  (H)   Ras  with
a   bound  GDP molecule.   By examining the  structure,  answer  the following
questions.
(a)  What type   of  secondary structure  is   adopted by the polypeptide  segments
Met 1–Ala 11 and  Thr  50–Ala   59?  (2   marks)
(b)  What type  of  secondary structure  is   adopted by the polypeptide  segment
Ile  93–Arg 102?   (1   mark)
(c)  How  many chiral  centres  are present   in  the C-terminal amino  acid  residue?
(1   mark)
(d)  At   the normal   cellular   pH, what   will be   the  charge   of  amino  acid  residue  62?
(1   mark)
(e)  In  this   model  of  isolated,  purified protein  none  of   the cysteine residues has
formed  disulphide bonds.  Assuming that   Ras adopts  the  same  conformation
within the  cell,  give  two  reasons   why  internal disulphide bonds are  unlikely
to  form  in  this  protein.  (2   marks)
(f)      The guanine base   of  the  GDP  forms  hydrogen  bonds with  Asp 119  in  Ras.
(i)       How  many hydrogen  bonds  are shown   in   the  model  between GDP and
Asp 119?   (1   mark)
(ii)  What functional  group of   the  amino  acid  forms  the bonds?   (1   mark)
(iii)  One hydrogen  bond is   formed  between the nitrogen atom  N1 in  the
guanine  base   and  the  oxygen   atom OD1   in   the  Asp residue   (N—H—O).
What is  the distance between the nitrogen and oxygen  atoms?   (1   mark)
(g)  Is   this  form  of   Ras active or  inactive?  Explain your  reasoning.  (2   marks)
(h)  If   site-directed  mutagenesis  was carried  out  on  H-Ras to  change   Lys  16 to
Tyr  16, what   effect do you  think this   would have  on the  function  of   the
protein?  Explain your   reasoning.  (2   marks)
(i)       Outline  what   effect interaction of   Ras  with  an  appropriate  GEF  (guanine
nucleotide exchange   factor)  would have  on the structure   and  function of   Ras.
(2   marks)
2
(j)       The segment  Ser  127–Tyr  137  adopts   an   α helix. Draw a  molecular   model  of
this   segment  of   the polypeptide  on a   white  background.  The model  should
show only  amino   acid  residues  Ser  127–Tyr  137.  The atoms  should  be   shown
as   scaled  ball-and-stick,  and  the  C-alpha  backbone   of   the  segment  using the
‘stick’   representation  from  the amino-acid  style  tools. (Omit   hydrogen  atoms
from  the model.)  Orientate the model  so  that  the α helix  is  clearly  visible
from  the side,  and  label  the two  basic amino  acid  residues,  either  using the
Viewerlite label  function or  by adding  labels  from  your   word processor, after
inserting  the  model into  your  TMA.  (9   marks)
Question  3
Ligand   A  binds  to  a  receptor,   R,   according  to:
A+R ↔ RA
An experiment   was carried  out  to  determine  the equilibrium  dissociation  constant
( KD
)   for  binding of   ligand  A  to  receptor  R.  The following  data   were   obtained.
[RA]/ pmol l
−1
(mg   protein)
−1
[A] / pmol  l
−1
4.1  0.49
7.8  1.15
15.2   2.14
19.8   3.89
23.5   6.32
28.2   8.67
[RA]  is   the concentration of   ligand  bound  to  the receptor  (expressed as  ligand
concentration per  mg of   receptor  protein)  and  [A]  is  the  concentration of   unbound
ligand.
(a)  Use these data  to  determine  KD
,  the equilibrium  dissociation  constant for the
interaction.   (8   marks)
(b)  Another  ligand,  B,  also  binds  to  the same  receptor,  R.  However,  KD
for the
interaction between B  and  R  is   greater  than  KD
for A  and  R.
Will the input  of  free  energy  required  to  dissociate  RB be  greater  than  or  less
than  that   required  to  dissociate  RA?  Briefly  set  out  your   reasoning.  (2   marks)
Question  4
To answer   this   question,  you  will  need  to  use the  gel electrophoresis  program
(SDS–PAGE)   from  Experimental investigation 1  on   the  DVD.  Go to   the
‘Laboratory’  and  from  the  ‘Options’   menu load  the  data   set  for
‘TMA  protein  2  (sypherin)’.
The molecular   weight  markers supplied with  sypherin  are phosphorylated
proteins  with  molecular   weights:  200  000,  98 000,  68  000,  45 000,  36 000 and
25 000.  Note   also  that   the preparation  of  sypherin  is  not  completely pure.
3
Carry out experiments  to:
(a)  Determine the number  of   polypeptides in  sypherin  and  their   approximate
molecular  weight.  (It   is  not necessary  to  produce a  calibration curve to
answer  this   question,  although  you   may want   to  do so  for  practice.)
(5   marks)
(b)  Determine  whether  sypherin  is   phosphorylated by  any  of   kinases   A,  B  or  C.
Your  answer  to  part  (b)  should  consist  of   a  single  annotated  figure   with  a
short   legend  stating  what  is  present  in  each  lane.  The answer   should  also
include  a   few  sentences   explaining how  you  have  interpreted  the results   and
reached your   conclusions.
You  will  need  to  select  appropriate   experimental  treatments  for the samples
and  an  appropriate  gel  concentration.  You  will  also  need  to  decide  whether  a
coomassie-stained gel  or   a  Western blot  is   needed. Save   the gel as  a  jpeg  file
and  insert the  picture   into   your   eTMA.  Annotate  the  gel/blot to  show what   is
present  in  each  lane   and  the markers.  (20   marks)
Question  5
You  are provided  with  a   copy  of   the  paper  to  read  for this   question on the  module
website.  It   can be   found in  the  Assessment  page, under Resources.
The full  reference  for  this  paper is:   Niwa, R.  and  Slack, F.  J.  (2007)  ‘The
evolution  of  animal   microRNA function’,  Current Opinion in  Genetics  &
Development, 17, pp. 145−150.
This  review  is  concerned with  the role  of   micro-RNAs  in  evolution. Micro-RNAs
(miRNAs)  are a   class  of  short   RNA molecule,  which regulate protein  expression,
primarily  by  controlling the stabilit y of   mRNA. Micro-RNAs  are introduced in
Section 5.4.3. They act  by  binding to  regions   in  the 3ȝ untranslated  region
(3 ȝUTR)  of  mRNAs, which have  complementary or   near-complementary
sequences. There is   some  additional   useful information  ‘Micro-RNA and  gene
regulation’   in  Book 2  at  the end  of  Section  10.6.4.,  including  Figure   10.44. We
suggest   that   you  tackle  this  question after   you  have  finished Chapter  5,  but skip
ahead to  read  the relevant subsection in  Chapter 10.
All  of   the information  needed  to  answer   this  question is  in  S377 and  the text   of
the  paper. It   is   not  necessary  to  follow  up  the extensive  reference  list.
From your   study of   S377 and  your   reading  of  the review  by Niwa  and  Slack:
(a)  Briefly  describe five  different  roles  of   RNA in  cell function.  Think of  the
different types  of   RNA and  the  particular  function of  each  type.   (5   marks)
(b)  Briefly  summarize  the structural   differences between DNA and  RNA.
(3   marks)
(c)  How  many bases  do typical  miRNAs  consist   of  ?   (1   mark)
(d)  What  tertiary  structure   do   the  precursors  of   miRNAs  have?  (1   mark)
(e)  What was the first  miRNA  to  be  identified?  Summarize  when during
development  it   is   expressed  and  what   it   does.  (2   marks)
4
(f)      The base  sequence   in  mRNA  is   ‘sense’  and  it  is   produced  from  the  template
strand   of   DNA.  The  sequence   of  a  miRNA that   binds  to   a  target  3ȝUTR   site  in
mRNA  will  be  complementary to  the  mRNA  sequence.  Suppose let-7
miRNA has  the  sequence:
5ȝ UGA GGU AGU  AGG  UUG UAA UAG UU 3ȝ.
What will  be   the complementary target  sequence  in  the 3ȝUTR  of   an   mRNA
molecule? The sequence  should  be   written  5 ȝ˜ 3ȝ.  (2   marks)
(g)  What evidence  is  there  that  the acquisition of   this  particular  family  of
miRNA  genes  was  an  important   step  in  the evolutionary development  of
metazoans (multicellular  animals with  differentiated cell types)?   (2   marks)
(h)  How  does   the  expression of  miRNAs  vary  in  different cell  types in  an
organism? Illustrate   your  answer   with  an  example  from  the paper.  (2   marks)
(i)       Through what   mechanisms   is   it  thought that   miRNA genes  have   increased  in
higher   organisms?   What  estimate does  the paper  give   for  the  number  of
miRNA  genes  in  the human  genome?  (It   is  interesting to  relate this  to  the
number  in  Section  5.4.3, which was  correct  as   of   2004.)   (2   marks)
(j)       What is  distinctive  about the role   of   miRNAs  that  are present  in  vertebrates?
Where  is   this  data   shown  in  the  paper?   (2   marks)
(k)  What evidence  do the authors  cite,  to  indicate that   miRNAs  can affect the
phenotype of   adult   animals?   (3   marks)
(l)       Why  do the authors   think that  the  3 ȝ UTR  target sequences  of   some  miRNAs
are strongly conserved during  evolution, while the majority of   miRNA targets
are  not  conserved?   What explanation  is   proposed  for the  function of   the
genes  carrying conserved target  sequences?   (3   marks)
(m)  What is  the overall   conclusion of  the article?       (2   marks)

© 2020 customphdthesis.com. All Rights Reserved. | Disclaimer: for assistance purposes only. These custom papers should be used with proper reference.